WiSe 2024/25 Prof. Dr. Lukas Kühne

Algebraic and Topological Methods in Discrete Mathematics Finite reflection groups, hyperplane arrangements, and (oriented) matroids

13. Homework sheet

- **Problem 1.** (a) Which of the 15 lattices on 6 elements are graded?
 - (b) Which of the graded lattices on 6 elements admit an R-labeling?
- **Problem 2.** (a) Fix any order and determine the broken circuit complex of the uniform matroid $U_{m,n}$ for $1 \le m \le n$.
 - (b) Determine the characteristic polynomial $\chi_{U_{m,n}}(t)$ of the uniform matroid $U_{m,n}$.
- **Problem 3.** Consider again the lattice Π_n of all partitions of the set $\{1, \ldots, n\}$. Note that the cover relations in lattice are of the form:

 $\{B_1, B_2, B_3, \ldots, B_k\} <: \{B_1 \cup B_2, B_3, \ldots, B_k\},\$

that is they exactly arise by merging two blocks in a partition.

Let $\lambda : \operatorname{Cov}(\Pi_n) \to \mathbb{Z}$ be defined by setting $\lambda(\pi_1, \pi_2) := \max(\min(B_1), \min(B_2))$ for two partitions $\pi_1 <: \pi_2$ which differ by merging the two blocks B_1 and B_2 . Prove that this labeling is an R-labeling on the partition lattice Π_n .

- **Problem 4.** For this exercise I recommend to use the matroid package in sagemath. It has a built-in interface to the database of matroids as described here.
 - (a) How many simple matroids are there on the ground set $\{1, \ldots, 9\}$ of rank 3?
 - (b) What is the minimum and maximum of the Whitney number w_2 amongst these matroids?
 - (c) Which of these matroids satisfy the combinatorial criterion of being simplicial as in Definition 3.14 in the lecture notes?
 - (d) Does the characteristic polynomial have only real roots for all matroids?