

Algebraic and Topological Methods in Discrete Mathematics Finite reflection groups, hyperplane arrangements, and (oriented) matroids

9. Homework sheet

Problem 1. Let \mathcal{A} be be a simplicial arrangement in \mathbb{R}^3 .

- (a) If there are $X, Y \in L(\mathcal{A})$ with r(X) = r(Y) = 2, $|\mathcal{A}_X| = |\mathcal{A}_Y| = 2$ and such that $X \neq Y$ are adjacent to the same chamber, then \mathcal{A} is reducible.
- (b) If \mathcal{A} is irreducible, then there are $X, Y \in L(\mathcal{A})$ with r(X) = r(Y) = 2 such that X, Y are adjacent to the same chamber and $|\mathcal{A}_X| = 2$, $|\mathcal{A}_Y| = 3$.

Problem 2. Let \mathcal{A} be an arrangement in \mathbb{F}_q^3 . Then \mathcal{A} is simplicial if and only if

$$|\mathcal{A}| = 3q - \frac{3n_0^{\mathcal{A}} + 2n_1^{\mathcal{A}}}{q+1}$$

where

$$n_i^{\mathcal{A}} := |\{ \langle v \rangle \mid v \in \mathbb{F}_q^3 \setminus \{0\}, \ |\{H \in \mathcal{A} \mid v \in H\}| = i\}|.$$

In particular, if \mathcal{A} is simplicial, then $|Ac| \leq 3q$.

Problem 3. Let \mathbb{F}_q be a finite field,

$$\begin{split} \mathcal{A} &:= & \{(0,1,a)^{\perp} \mid a \in \mathbb{F}_q\} \cup \{(1,a,a^2)^{\perp} \mid a \in \mathbb{F}_q\}, \quad \text{and} \\ \mathcal{E} &:= & \{(1,a,0)^{\perp} \mid a \in \mathbb{F}_q^{\times}\}, \end{split}$$

where $(a, b, c)^{\perp}$ denotes the kernel of the matrix $(a \ b \ c)$.

Show that if q is odd, then $\mathcal{A} \cup \mathcal{B}$ is simplicial for all $\mathcal{B} \subseteq \mathcal{E}$.

Problem 4. Is this arrangement simplicial?

