

Algebraic and Topological Methods in Discrete Mathematics Finite reflection groups, hyperplane arrangements, and (oriented) matroids

8. Homework sheet

- **Problem 1.** Let \mathcal{A} be the boolean arrangement given by $Q(\mathcal{A}) = x_1 \cdots x_\ell$. Prove that $\mu(X) = (-1)^{r(X)}$ for $X \in L(\mathcal{A})$. Compute the characteristic polynomial and the number of chambers of \mathcal{A} .
- **Problem 2.** Compute $\chi_{\mathcal{A}}(q)$ for the arrangement in \mathbb{F}_q^{ℓ} defined by

$$Q(\mathcal{A}) = \prod_{1 \le i \le j \le \ell} (x_i + \ldots + x_j).$$

Deduce a formula for the characteristic polynomial $\chi_{\mathcal{A}}$ of the braid arrangement.

Problem 3. Let \mathcal{A} be an arrangement, $H_0 \in \mathcal{A}$, and $\mathcal{A}'' := \mathcal{A}^{H_0}$ be the restriction of \mathcal{A} to H_0 . Show that for $\mathcal{B}'' \subseteq \mathcal{A}''$,

$$(-1)^{|\mathcal{B}''|} + \sum_{H_0 \in \mathcal{B} \subseteq \mathcal{A}, \ \mathcal{B}^{H_0} = \mathcal{B}''} (-1)^{|\mathcal{B}|} = 0.$$