WiSe 2024/25 Prof. Dr. Raman Sanyal

Algebraic and Topological Methods in Discrete Mathematics Finite reflection groups, hyperplane arrangements, and (oriented) matroids

6. Homework sheet

Problem 1. Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n and $\mathcal{F} = \mathcal{F}(\mathcal{A})$ the collection of faces of \mathcal{A} , that is, the set of faces of the regions of \mathcal{A} . The **Euler characteristic** of \mathcal{F} is

$$\chi(\mathcal{F}) := \sum_{F \in \mathcal{F}} (-1)^{\dim F}$$

How that if \mathcal{A} is simplicial¹, then $\chi(\mathcal{F}) = (-1)^n$.

Problem 2. For a permutation $\sigma \in \mathfrak{S}_n$, a **descent** is an index $1 \leq i < n$ with $\sigma(i) > \sigma(i+1)$. We write $\operatorname{Des}(\sigma) \subseteq [n-1]$ for the descents of σ . For $S \subseteq [n-1]$, define $\operatorname{Des}_S := \{\sigma \in \mathfrak{S}_n : \operatorname{Des}(\sigma) = S\}$ and define $\operatorname{Des}^S := \{\sigma \in \mathfrak{S}_n : \operatorname{Des}(\sigma) \subseteq S\}$. (a) For $S = \{s_1 < s_2 < \cdots < s_k\}$ show that

$$|\text{Des}^{S}| = \binom{n}{s_1, s_2 - s_1, \dots, s_k - s_{k-1}, n - s_k} = \frac{n!}{s_1!(s_2 - s_1)! \cdots (s_k - s_{k-1})!(n - s_k)!}.$$

(b) Define the multivariable polynomials $F, f \in \mathbb{R}[x_1, \dots, x_{n-1}]$ by

$$f(x_1, \dots, x_{n-1}) := \sum_{S \subseteq [n-1]} \operatorname{Des}_S(S) \prod_{i \notin S} x_i$$
$$F(x_1, \dots, x_{n-1}) := \sum_{S \subseteq [n-1]} \operatorname{Des}^S(S) \prod_{i \notin S} x_i.$$

Show that $F(x_1, \ldots, x_{n-1}) = f(x_1 + 1, \ldots, x_{n-1} + 1).$

Problem 3. Let W be an essential² finite reflection group acting on V and let $T = \{s_{\beta} : \beta \in \Phi\}$ be the collection of *all* reflections in W. Define the **absolute length** of $w \in W$ as

$$\ell(w) := \min\{k : w = t_1 t_2 \cdots t_k : t_1, \dots, t_k \in T\}.$$

- (a) For $w \in W$, let $V^w := \{v \in V : wv = v\}$ be the subspace fixed by w. Show that $\overline{\ell}(w) = \dim V \dim V^w$.
- (b) This implies that $\overline{\ell}(w) \leq \dim V =: n$. Show that if Δ is a simple system, then the product of $s_{\alpha}, \alpha \in \Delta$ in any order achieves the maximal absolute length.
- (c) For $W = \mathfrak{S}_n$, show that $\overline{\ell}(\sigma) = n k$ iff σ is the product of k disjoint cycles. Note that cycles of length 1 (i.e. fixed points) are also counted. For example $e = (1)(2)(3) \in \mathfrak{S}_3$ has absolute length $\overline{\ell}(e) = 0 = 3 - 3$.

²Fixed space of W is 0.

¹It also holds for general arrangements but it's particularly nice and easy for simplicial ones.