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4. Homework sheet

Problem 1. Prove Corollary 5.10.

Problem 2. Let W be a finite reflection group with simple system A and length function ¢ relative
to A.

(a) Show that there is a unique element wy € W of maximal length. This is called
the longest element of W relative to A. What is the length?

(b) Show that wy is an involution, that is w3 = e.

(c) Prove that in every reduced expression of wy, every simple reflection must occur
at least once.

(d) Let w with reduced expression w = sj---s,. Show that there is a w’ with
reduced expression w’ = s,41 - 8, such that sy -+ 8,841 S is a reduced
expression for wy.

(e) Showe that for every w = 1" there is a simple system A such that w-is the
longest element.

Problem 3. For a collection of linear hyperplanes A in V, the lattice of flats £ = £(A) is the
collection of linear subspaces obtained as intersections of hyperplanes in A, partially
ordered by reverse inclusion. Thus, the minimal element in £ is V, the maximal
element is [ A.

Let A be the reflection arrangement for the reflection group of type A, _1.

(a) Give a combinatorial® description of the elements in L.

(b) How many elements L € L of codimension k are there? What famous combi-
natorial numbers count the number of codim k subspaces?

(c) Show that all parabolic subgroups are products of symmetric groups.

1Here7 this should mean that you can give a description in the language of finite sets and no mention of (linear)
algebra or geometry. You’ll see!



