WiSe 2024/25 Prof. Dr. Raman Sanyal

Algebraic and Topological Methods in Discrete Mathematics Finite reflection groups, hyperplane arrangements, and (oriented) matroids

4. Homework sheet

Problem 1. Prove Corollary 5.10.

- **Problem 2.** Let W be a finite reflection group with simple system Δ and length function ℓ relative to Δ .
 - (a) Show that there is a unique element $w_0 \in W$ of maximal length. This is called the **longest element** of W relative to Δ . What is the length?
 - (b) Show that w_0 is an involution, that is $w_0^2 = e$.
 - (c) Prove that in every reduced expression of w_0 , every simple reflection must occur at least once.
 - (d) Let w with reduced expression $w = s_1 \cdots s_r$. Show that there is a w' with reduced expression $w' = s_{r+1} \cdots s_m$ such that $s_1 \cdots s_r s_{r+1} \cdots s_m$ is a reduced expression for w_0 .
 - (e) Show that for every $w \in W$ there is a simple system Δ such that w is the longest element.
- **Problem 3.** For a collection of linear hyperplanes \mathcal{A} in V, the **lattice of flats** $\mathcal{L} = \mathcal{L}(\mathcal{A})$ is the collection of linear subspaces obtained as intersections of hyperplanes in \mathcal{A} , partially ordered by *reverse* inclusion. Thus, the minimal element in \mathcal{L} is V, the maximal element is $\bigcap \mathcal{A}$.

Let \mathcal{A} be the reflection arrangement for the reflection group of type A_{n-1} .

- (a) Give a *combinatorial*¹ description of the elements in \mathcal{L} .
- (b) How many elements $L \in \mathcal{L}$ of codimension k are there? What famous combinatorial numbers count the number of codim k subspaces?
- (c) Show that all parabolic subgroups are products of symmetric groups.

¹Here, this should mean that you can give a description in the language of finite sets and no mention of (linear) algebra or geometry. You'll see!